If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+16x-55=0
a = 1; b = 16; c = -55;
Δ = b2-4ac
Δ = 162-4·1·(-55)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{119}}{2*1}=\frac{-16-2\sqrt{119}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{119}}{2*1}=\frac{-16+2\sqrt{119}}{2} $
| 12v+132=924 | | 5x=34=-2(-7x+1) | | -7=(x/3)+2 | | –3(x+4)=2x–37 | | 4^(5x-5)=256 | | 26m-75=887 | | 3x+13(15x−18)=42 | | 4^5x-5=256 | | k-25=104 | | 9y+4=94 | | a=8+4 | | 6-3(x-7)=39 | | 4*2x+1=64 | | 21+7q=84 | | w-33=87 | | 8÷w=24 | | 11=28x | | -1/9x=5 | | f+22=63 | | 6(–8b+1)=6(–8b+1) | | 10x+6=‐2 | | r-60/5=6 | | n-42=99 | | 24=9+5w | | 3x-10/x+2=12 | | 4x2-32=90 | | )3x+2=20 | | -6f+4.5f-1.59=0.2f+6.4 | | 12-5d=97 | | 10x^2+15=55 | | 6(k-95)=6 | | 12-7d=-9 |